8 research outputs found

    Recognizing well-parenthesized expressions in the streaming model

    Full text link
    Motivated by a concrete problem and with the goal of understanding the sense in which the complexity of streaming algorithms is related to the complexity of formal languages, we investigate the problem Dyck(s) of checking matching parentheses, with ss different types of parenthesis. We present a one-pass randomized streaming algorithm for Dyck(2) with space \Order(\sqrt{n}\log n), time per letter \polylog (n), and one-sided error. We prove that this one-pass algorithm is optimal, up to a \polylog n factor, even when two-sided error is allowed. For the lower bound, we prove a direct sum result on hard instances by following the "information cost" approach, but with a few twists. Indeed, we play a subtle game between public and private coins. This mixture between public and private coins results from a balancing act between the direct sum result and a combinatorial lower bound for the base case. Surprisingly, the space requirement shrinks drastically if we have access to the input stream in reverse. We present a two-pass randomized streaming algorithm for Dyck(2) with space \Order((\log n)^2), time \polylog (n) and one-sided error, where the second pass is in the reverse direction. Both algorithms can be extended to Dyck(s) since this problem is reducible to Dyck(2) for a suitable notion of reduction in the streaming model.Comment: 20 pages, 5 figure

    Almost uniform sampling via quantum walks

    Get PDF
    Many classical randomized algorithms (e.g., approximation algorithms for #P-complete problems) utilize the following random walk algorithm for {\em almost uniform sampling} from a state space SS of cardinality NN: run a symmetric ergodic Markov chain PP on SS for long enough to obtain a random state from within Ï”\epsilon total variation distance of the uniform distribution over SS. The running time of this algorithm, the so-called {\em mixing time} of PP, is O(ή−1(log⁥N+logâĄÏ”âˆ’1))O(\delta^{-1} (\log N + \log \epsilon^{-1})), where ÎŽ\delta is the spectral gap of PP. We present a natural quantum version of this algorithm based on repeated measurements of the {\em quantum walk} Ut=e−iPtU_t = e^{-iPt}. We show that it samples almost uniformly from SS with logarithmic dependence on ϔ−1\epsilon^{-1} just as the classical walk PP does; previously, no such quantum walk algorithm was known. We then outline a framework for analyzing its running time and formulate two plausible conjectures which together would imply that it runs in time O(ή−1/2log⁥NlogâĄÏ”âˆ’1)O(\delta^{-1/2} \log N \log \epsilon^{-1}) when PP is the standard transition matrix of a constant-degree graph. We prove each conjecture for a subclass of Cayley graphs.Comment: 13 pages; v2 added NSF grant info; v3 incorporated feedbac

    Recurrence of biased quantum walks on a line

    Full text link
    The Polya number of a classical random walk on a regular lattice is known to depend solely on the dimension of the lattice. For one and two dimensions it equals one, meaning unit probability to return to the origin. This result is extremely sensitive to the directional symmetry, any deviation from the equal probability to travel in each direction results in a change of the character of the walk from recurrent to transient. Applying our definition of the Polya number to quantum walks on a line we show that the recurrence character of quantum walks is more stable against bias. We determine the range of parameters for which biased quantum walks remain recurrent. We find that there exist genuine biased quantum walks which are recurrent.Comment: Journal reference added, minor corrections in the tex

    Pseudo-Hermitian continuous-time quantum walks

    Full text link
    In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.Comment: 13 page, 7 figure

    Bits and qubits

    No full text
    Quantum computing is an interdisciplinary field of research, and it is natural that many people starting in this area should feel uncomfortable with the fundamentals of either computer science or physics. In this chapter, we briefly review the basic concepts necessary to follow the rest of the book734CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIRO - FAPERJFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPNão temNão temNão temNão temWe are grateful to our colleagues and students from the Federal University of Rio de Janeiro (UFRJ, Brazil), the National Laboratory for Scientific Computing (LNCC, Brazil), and the University of Campinas (UNICAMP, Brazil) for several important discussions and interesting ideas. We acknowledge CAPES, CNPq, FAPERJ, and FAPESP—Brazilian funding agencies—for the financial support to our research projects. We also thank the Brazilian Society of Computational and Applied Mathematics (SBMAC) for the opportunity to give a course on this subject that resulted in the first version of this monograph in Portuguese (http://www.sbmac.org.br/arquivos/notas/livro_08.pdf), which in turn evolved from our earliest tutorials (in arXiv quant-ph/0301079 and quant-ph/0303175
    corecore